
fnins-14-558434 September 30, 2020 Time: 16:49 # 1

ORIGINAL RESEARCH
published: 30 September 2020

doi: 10.3389/fnins.2020.558434

Edited by:
Kin Ying Mok,

University College London,
United Kingdom

Reviewed by:
Kewei Chen,

Banner Alzheimer’s Institute,
United States

Can Martin Zhang,
Massachusetts General Hospital and

Harvard Medical School, United
States

Jie Xiang,
Taiyuan University of Technology,

China

*Correspondence:
Fengzhen Hou

houfz@cpu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 02 May 2020
Accepted: 04 September 2020
Published: 30 September 2020

Citation:
Zhang L, Ni H, Yu Z, Wang J,

Qin J, Hou F and Yang A
for the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (2020)
Investigation on the Alteration of Brain

Functional Network and Its Role
in the Identification of Mild Cognitive

Impairment.
Front. Neurosci. 14:558434.

doi: 10.3389/fnins.2020.558434

Investigation on the Alteration of
Brain Functional Network and Its
Role in the Identification of Mild
Cognitive Impairment
Lulu Zhang1†, Huangjing Ni2†, Zhinan Yu1, Jun Wang2, Jiaolong Qin3, Fengzhen Hou1*
and Albert Yang4 for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

1 Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, China,
2 Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and
Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China, 3 Key Laboratory of Intelligent
Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing, China, 4 Division of Interdisciplinary Medicine
and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA,
United States

Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of
Alzheimer’s disease (AD). In coping with the challenges caused by AD, we analyzed
resting-state functional magnetic resonance imaging data of 82 MCI subjects and
93 normal controls (NCs). The alteration of brain functional network in MCI was
investigated on three scales, including global metrics, nodal characteristics, and
modular properties. The results supported the existence of small worldness, hubs,
and community structure in the brain functional networks of both groups. Compared
with NCs, the network altered in MCI over all the three scales. In scale I, we found
significantly decreased characteristic path length and increased global efficiency in MCI.
Moreover, altered global network metrics were associated with cognitive level evaluated
by neuropsychological assessments. In scale II, the nodal betweenness centrality of
some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R)
and fusiform gyrus (FFG.R), changed significantly and associated with the severity and
cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended
to be clustered into the same module regardless of group, discrepancies existed in the
composition of modules in both groups, with a prominent separation of the cerebellum
and a less localized organization of community structure in MCI compared with NC.
Taking advantages of random forest approach, we achieved an accuracy of 91.4% to
discriminate MCI patients from NCs by integrating cognitive assessments and network
analysis. The importance of the used features fed into the classifier further validated
the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in
the identification of MCI. In conclusion, the present study demonstrated that the brain
functional connectome data altered at the stage of MCI and could assist the automatic
diagnosis of MCI patients.

Keywords: Alzheimer’s disease, mild cognitive impairment, resting-state functional MRI, modular structure, graph
theory, machine learning
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INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative disease,
represents the most common type of dementia (Ahmadlou
et al., 2010; Li et al., 2011). The prevalence of AD is a tremendous
burden to individuals, families, and society. The treatment for
AD remains unavailable and no way can prevent or reverse
the progression of AD; only the early intervention of AD may
influence its onset and deterioration (Al-Shoukry et al., 2020).
Mild cognitive impairment (MCI) is generally regarded as a
prodromal stage of AD since patients with MCI convert to
AD at a rate of approximately 15% per year (Davatzikos et al.,
2011). Hence, it is important to explore the neuropathological
alteration in MCI, discover potential target for neuromodulation
in treating MCI, and prompt effective method for the early
diagnosis of MCI.

Theoretically, the human brain can be represented as a
“connectome,” a large-scale network of interconnected regions
that provides the anatomical substrate for neural communication,
functional processing, and information integration (Fornito et al.,
2013). Brain connectivity has been widely analyzed based on
the graph theory by regarding neural elements (e.g., neurons
and brain regions) as nodes and some measures of structural,
functional, or causal interaction between nodes as edges (Fornito
et al., 2013; Onias et al., 2014; Khazaee et al., 2015; Fang et al.,
2017). Numerous studies have demonstrated its effectiveness in
investigating the altered brain network pattern with MCI (Yao
et al., 2010, 2018; Zhao et al., 2012; Seo et al., 2013; Xiang
et al., 2013; Son et al., 2015; Deng et al., 2016; Pereira et al.,
2016; Sánchez-Catasús et al., 2018). One of the shortcomings
in most related studies is that only the cerebral regions were
considered. However, recent studies have demonstrated that
the cerebellum may play a vital role in neurodegenerative
processes like AD. Evidences from functional imaging studies
have reported the involvement of the cerebellum in various
cognitive tasks besides the traditional motor ones (Stoodley,
2012), and cerebellar abnormality has also been reported in
AD/MCI patients recently (Tabatabaei-Jafari et al., 2017; Pagen
et al., 2020). Therefore, exploring the whole-brain functional
network, including both cerebral and cerebellar regions, can
disclose more comprehensive information of the abnormal brain
connectome in MCI patients.

Graph metrics of the functional brain network are found to be
informative to characterize MCI patients (Khazaee et al., 2016;
Xu et al., 2020). In practice, in a brain functional network, a
region can be deemed as a node, and the edges can be determined
by the functional interaction of nodes. Various metrics have
been proposed in the literature to quantify the topological
characteristics of such a network and can be generally classified
into three distinct scales. Measures from the three scales variously
focus on characterizing aspects of function integration and
segregation, quantifying importance of individual brain regions,
and detecting patterns of local anatomical circuitry (Rubinov and
Sporns, 2010; Tijms et al., 2013).

Moreover, the past decades witness the increasing growth in
clinical use of artificial intelligence. Machine learning approaches
are found to be quite useful for discriminating MCI patients

from normal controls (NCs) (Tanveer et al., 2020). Some
researchers made use of linguistic and/or acoustic features
(Gosztolya et al., 2019; Orimaye et al., 2020; Calzà et al., 2021),
while the overwhelming majority of previous studies focused
on utilizing the neuroimaging biomarkers for the identification
of MCI (Tanveer et al., 2020). Growing functional magnetic
resonance imaging (fMRI) studies have been devoted to the
classification task between MCI patients and NCs (Chen et al.,
2011; Jie et al., 2013, 2014; Suk et al., 2013; Wang et al., 2013;
Wee et al., 2013a,b; Cui et al., 2018; Xu et al., 2020). Most
recently, Xu et al. (2020) utilized a combination of information
in the functional brain connectome for the discrimination
of MCI and NC. When the functional connections, global
metrics, and nodal metrics were combined, an accuracy of
92.9% was achieved on 105 participants (41 MCI patients
and 60 NCs). However, accuracy dramatically dropped to
66.0% when testing the pretrained model with an independent
dataset from the AD Neuroimaging Initiative (ADNI) database
(Xu et al., 2020).

In this study, we retrospectively analyzed resting-state fMRI
(rs-fMRI) data derived from 82 MCI patients and 93 NCs from
ADNI. Brain functional networks were constructed from rs-
fMRI data, and the network metrics were analyzed from three
scales. Both cerebral and cerebellar regions were covered in the
construction of the graph. A weighted network was used in
order to keep the information in the functional connectivity
(FC). Furthermore, graph metrics were then combined to train
and validate an automatic model on MCI and NC subjects.
Our primary goal was to investigate the alterations of network
properties that occurred at the stage of MCI and to find out
whether the analysis of functional network can assist the accurate
diagnosis of MCI patients.

PARTICIPANTS

In this study, rs-fMRI data derived from 82 MCI patients and
93 NCs were obtained from the ADNI database.1 Participants
in ADNI were included in the present study if they met
the following criteria: (i) ages between 55.0 and 80.0; (ii)
scanning with parameters of repetition time of 3,000 ms,
echo time of 30 ms, flip angle of 80◦ or 90◦, slices of
48, and voxel size of 3.31 mm × 3.31 mm × 3.31 or
3.44 mm × 3.44 mm × 3.40 mm; (iii) available records of
their cognitive and behavioral assessments, comprising scores
from the 13-item AD assessment scale (ADAS13), clinical
dementia rating scale sum of boxes (CDRSB), Mini-Mental
State Examination (MMSE), and frequently asked questions
(FAQ); (iv) head motions <1.5 mm and 1.5◦; (v) mean
fractional displacement head motion values <0.2 mm; and
(vi) satisfying MRI quality control and excluding unclear
spatial normalization pictures. The demographics and clinical
characteristics of the participants are illustrated in Table 1. Cross-
sectional comparisons indicated a significant group effect on
ADAS13, CDRSB, MMSE, or FAQ scores.

1http://adni.loni.usc.edu/
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TABLE 1 | Demographic and clinical characteristics of MCI and NC.

Information NC MCI p-value

Number of participants 93 82

Age (years) 70.47 ± 5.91 71.61 ± 5.1 0.176

Gender (male/female) 46/36 36/57 0.024*

ADAS13 score 14.92 ± 6.81 11.62 ± 5.3 0.001*

CDRSB score 1.38 ± 1.26 0.13 ± 0.6 <0.001*

MMSE score 27.89 ± 1.82 28.88 ± 1.46 <0.001*

FAQ total score 3.15 ± 4.53 0.4 ± 1.93 <0.001*

NC, normal controls; MCI, mild cognitive impairment; ADAS13, 13-item Alzheimer’s
Disease Assessment Scale; CDRSB, Clinical Dementia Rating sum of boxes score;
MMSE, Mini-Mental State Examination; FAQ, frequently asked questions; plus–
minus score values are mean ± SD. *Significant difference between the two groups
(p < 0.05).

Data Preprocessing
In this study, after discarding the first several volumes (five
and seven for the data acquired before and after year 2014,
respectively), data preprocessing was conducted with the help
of Data Processing Assistant for Resting-State fMRI Advanced
Edition (version 4.3), which is based on Statistical Parametric
Mapping (SPM,2) and the toolbox for Data Processing and
Analysis of Brain Imaging (DPABI3) (Yan and Zang, 2010;
Yan et al., 2016). First, slice timing, motion correction, and
normalization to the Montreal Neurological Institute space
were conducted using T1 image unified segmentation. Then,
nuisance covariates including six head motion parameters, white
matter signal, cerebral spinal fluid signal, and global signal
were regressed. In order to remove the spiking influence caused
by motion artifacts (Power et al., 2012; Burgess et al., 2016;
Ciric et al., 2017, 2018), a despiking step (Parkes et al., 2017)
was adopted. Next, the temporal filtering (0.01–0.1 Hz) step
was performed. Like general fMRI data using the echo-planar
imaging sequence, artifacts could be caused by the distortion
and loss of signal in the anterior temporal and orbitofrontal
regions in ADNI, which might influence the connectivity between
these regions and the others. To reduce the variability due to
susceptibility artifacts, temporal signal-to-noise ratio (TSNR)
(Murphy et al., 2007) map on the whole brain was calculated
for each subject. A binary TSNR mask was obtained when a
threshold of 20 was set on the averaged TSNR map (Zhuo et al.,
2016) and further intersected with the Automated Anatomical
Labeling (AAL) atlas to generate the final mask. Finally, based on
the TSNR-thresholded AAL atlas, the preprocessed images were
parcellated into 116 regions of interest (ROIs) and the regional
mean time series of blood oxygenation level-dependent signals
with the first 135 time points were extracted from each ROI for
the further analysis.

From ROI Time Series to Weighted and
Undirected Network
Time series derived from the ith and jth ROIs were denoted as Xi
and Xj, respectively. The absolute Pearson correlation coefficient

2http://www.fil.ion.ucl.ac.uk/spm
3http://rfmri.org/DPABI

between Xi and Xj, denoted as rij and calculated by Formula (1),
was used in the present study to evaluate the FC between the two
ROIs.

rij =

∣∣∣∣∣∣∣
∑

(Xi − Xi)(Xj − Xj)√∑
(Xi − Xi)2

√∑
(Xj − Xj)2

∣∣∣∣∣∣∣ (1)

Here, Xi and Xj represent the mean of time series Xi and Xj,
respectively. Given a total of N ROIs, a symmetric matrix w with
N∗N elements can be obtained by evaluating the FC values over
all the possible ROI pairs, as shown in Formula (2):

wij =

{
1, i = j
rij, i, j ∈ [1,N] , and i 6= j

(2)

In order to exclude the self-connections, values in the diagonal
line of matrix w were then set to 0. In this way, for each
individual, a fully connected, undirected, and weighted network
was obtained by regarding each ROI as a node and w as the
adjacent matrix. We also constructed group-level networks based
on the individual adjacent matrix for MCI patients and NCs,
respectively. That is, the element wij of the group-level network
is the average value of wij in each individual graph within a
certain group. Such a group-level network summarizes FC maps
on average over all subjects within the group and captures
the connectivity backbone of the group (Meunier et al., 2009;
Sun et al., 2014).

Topological Metrics in Three Scales
The topological characteristics of a fully connected network
might be contaminated by the presence of numerous weak
connections among ROIs. Generally, a threshold is used, and
only the supra-threshold FCs are retained, leading to a sparse
network for analysis. The term network sparsity or density
was proposed to represent the proportion of supra-threshold
connections relative to all possible connections. As most graph
theoretic measures are contingent on the number of nodes and
the connection density, it is common to prescribe a shared
network sparsity for all the networks compared (Fornito et al.,
2013). However, there is no unified rule for the determination of
network sparsity. Therefore, we used a wide range of sparsities,
i.e., from 5 to 50% with steps of 1%, to analyze graphical
properties of brain functional network. When a certain sparsity
was used, each full-connected network (estimated for either
an individual or a group) was thresholded by keeping the
corresponding number of edges with the strongest FCs.

For each participant, based on the individual network
thresholded by a certain sparsity, classical network metrics for
scale I, such as the clustering coefficient (C), characteristic path
length (L), global efficiency (GE), and small worldness (SW,
random number was set as 1,000) were investigated in this
study. In scale II, the regional nodal characteristics regarding
the global hubs were assessed qualitatively on the group-level
networks obtained across the sparsities ranging from 5 to 50%.
The betweenness centrality of a node i (denoted as bci) in the
group-level network was calculated and normalized as BCi =

bci/ < bci >, where < bci > is the average betweenness of all
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nodes. BCi measures the importance of node i over information
flow between other nodes throughout the network, and the
regions with high values of BCi are usually identified as hubs.
Some studies identified hubs as nodes with BCi larger than 1.5
(He et al., 2008) or 2 (Yao et al., 2010), and in this study, we used
a stricter threshold for the definition of hubs as 2.5. To be noted,
nodal bci was also calculated for each subject on the individual
network and the group difference was evaluated.

In scale III, we investigated the modular structure
quantitatively via the group-level networks. The modular
organization has been thought to be one of the most fundamental
principles in complex systems and demonstrated to exist in
human brain networks in previous studies (Deng et al., 2016;
Pereira et al., 2016; Jalili, 2017). Modularity (denoted as Q in the
following), a measure for the quality of the community structure
in a network (Newman, 2006), was computed on the group-level
networks for a qualitative assessment when network sparsity
ranged from 5 to 50%, with steps of 1%. Meanwhile, modules
were detected as subsets of nodes in the network that are more
densely connected to the other nodes in the same module than to
nodes outside the module (Radicchi et al., 2004).

Definitions and brief descriptions of the network metrics
used are given in the Supplementary Material (Supplementary
Table S1). More details can been found in a previous report
(Rubinov and Sporns, 2010). The calculation of those metrics
were implemented in MATLAB (version R2014a, Mathworks
Inc., Natick, MA, United States) software with Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

Statistical Analysis
Statistical evaluations were conducted using R program (version
4.0.2). For cross-sectional comparisons of demographic and
clinical characteristics between the MCI and NC groups, the
normality of the data was first evaluated by Lilliefors test. The
Fisher’s exact test was applied to categorical variables (only
gender here), and Wilcoxon rank sum test or t-test was used
to compare the continuous variables in the case of violating the
normality or not. Logistic regression analysis, which considered
group as dependent variable and network metrics (both global
and nodal measures, i.e., C, L, GE, SW, and nodal bci) as
independent variables, was used to evaluate whether there is
significant difference of network metrics between both groups.
Moreover, gender was controlled as concomitant variable in
the logistic regression analysis. p < 0.05 was considered as an
indicator for significant difference.

Classification of MCI and NC
In this study, in addition to four scores of cognitive assessments,
there are four global and 116 nodal (i.e., bc) network metrics
for each subject, resulting in 124 features under each sparsity.
Considering the classification scenario with high-dimensional
features and low-size samples, we hereby proposed a two-layer
random forest approach for the task, with the first layer for
feature selection and the second for classification. Such an
approach was implemented on Python 3.7 with the widely used
scikit-learn library (Pedregosa et al., 2011).

The importance of the used features can be measured by the
out-of-bag (OOB) error (Genuer et al., 2010). In the random
forest approach, under each sparsity, all the 124 features were
fed into the first-layer forest and ranked according to the OOB
error provided by scikit-learn. Afterward, the top N important
features of the first layer were selected and fed into the second
layer to train a model. A wide range of N from 5 to 30 was
considered in this study.

For the second layer, two hyperparameters of the random
forest, i.e., the number of trees in the forest and the maximum
depth of the tree, were fine-tuned. Specifically, a five-fold grid
search was embedded in an outer loop to fulfill a 10-fold
nested cross-validation (CV) for evaluating the performance of
the classifier, i.e., the accuracy, sensitivity, specificity, and area
under receiver operating characteristic curve (AUC). Nested CV
was demonstrated to produce robust and unbiased performance
estimates regardless of sample size (Vabalas et al., 2019).

RESULTS

Global Network Metrics of Scale I
Global network properties including C, L, GE, and SW were
calculated and compared for the MCI and NC groups across
sparsities ranging from 5 to 50%, with steps of 1%. The results
are illustrated in Figure 1. In both groups, all the global
network metrics altered rapidly along with small sparsities and
gradually converged toward a sparsity of 50%. No significant
group difference of C was found at any sparsities (Figure 1A).
Compared to NC, a significant decrease (or increase) of L
(or GE) was observed in MCI across almost all the sparsities
(Figures 1B,C). As shown in Figure 1D, the SW values were
larger than one for both groups under all the calculated
sparsities, suggesting the existence of small-world properties in
the functional networks. However, significant group difference of
SW can only be observed with the sparsity of 16–20%.

Moreover, partial correlation analysis (controlling gender) was
used to evaluate the association between global network metrics
(C, L, GE, and SW) and clinical characteristics (ADAS13, CDRSB,
MMSE, and FAQ scores) by pooling all participants together. The
values of C were shown to be associated negatively with MMSE
and positively with CDRSB, ADAS13, or FAQ scores (Figure 2A),
indicating a stable association between C and clinical symptoms
of MCI regardless of network sparsity. Similarly, significant
correlation was found between other global network metrics and
the cognitive scores.

In Figures 1, 2, rapid alterations can be observed on both
the values of the global network metrics and the correlation
coefficients between them and the clinical scores when the used
network sparsity was small (about <13%). Such an observation
may be attributed to the isolated ROIs in the individual networks,
which has a percentage >5% when sparsity <9% for NC and 12%
for MCI group (shown in Supplementary Figure S1).

Nodal Characteristics of Scale II
The global hubs of the functional brain network were detected
in both groups across all the considered sparsities. As shown in
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FIGURE 1 | Values of global network metrics (the central line represents the group mean and the envelopes represents mean ± standard error) for normal controls
(NC) and mild cognitive impairment (MCI) patients: (A) clustering coefficient, (B) characteristic path length, (C) global efficiency, and (D) small worldness. The symbol
“*” represents a significant group difference of the network metric in the corresponding sparsity (p < 0.05, logistic regression analysis, controlling gender).

Figure 3, the right lobule VIII of cerebellar hemisphere (CER8.R)
and the left insula (INS.L) were identified as global hubs across
almost all the sparsities in both groups. Additionally, global hubs
also occur frequently on regions including the left lobule VIII
of the cerebellar hemisphere (CER8.L), the right lobule IV–V of
the cerebellar hemisphere (CER4-5.R), the right superior frontal
gyrus of the medial orbital surface (ORBsupmed.R), and the right
middle frontal gyrus (MFG.R) in MCI (Figure 3A), as well as
the right lobule VI of the cerebellar hemisphere (CER6.R), the
left lobule IV–V of the cerebellar hemisphere (CER4-5.L), the
bilateral Crus II of the cerebellar hemisphere (CERCRU2), and
the left temporal pole of the superior temporal gyrus (TPOsup.L)
in NC (Figure 3B). Moreover, regions in MCI, including the left
rolandic operculum (ROL.L), the right superior temporal gyrus
(STG.R), the right inferior occipital gyrus (IOG.R), and right
caudate nucleus (CAU.R), and regions in NC, such as the right
putamen (PUT.R), the left superior temporal gyrus (STG.L), the
right temporal pole of superior temporal gyrus (TPOsup.R), and
bilateral fusiform gyrus (FFG) were also identified as global hubs
at about one third (or more) sparsities.

Significant differences of nodal bc between MCI patients and
NCs were found in many ROIs, which were also identified as
global hubs and altered across the groups, such as CER8.L,
CERCRU2.R, bilateral FFG, IOG.R, and CAU.R (Figure 4).
Figure 5 further illustrates the values of bc in those regions,
demonstrating an agreement with the quantitative information
provided by the hubs of the group-level network.

The Modular Structure of Scale III
Figure 6A shows the modularity Q achieved for group-level
networks and the corresponding randomized networks across
the sparsities from 5 to 50%. The value of Q decreased with
the increasing network sparsity for both groups. The result of
permutation tests demonstrated that Q is significantly larger than
those obtained by the randomly shuffled networks, indicating
that the modular structure obtained is non-random across all
the sparsities (Figure 6A) (see Supplementary Material for the
details of permutation tests). The number of modules detected for
each group also alters with the sparsities (Figure 6B). When there
are no isolated nodes in the group-level network (i.e., sparsity
larger than 7%), there would be two to five modules in each group.

Table 2 and Figure 7 illustrated the modular structures
detected in both groups at a sparsity of 16% where we obtained
highest performance to discriminate MCI patients from NCs
(introduced below). Four functionally oriented modules were
uncovered for both groups. For the modular structure of NC,
anatomically adjacent ROIs tended to be clustered into the same
module. The first module, represented as Module I, contains
the thalamus, basal ganglia, and all the ROIs in the cerebellar
regions. Module II of NC covers the entire parietal lobe and the
majority of frontal lobe. Moreover, the right anterior cingulate
and paracingulate gyri, the bilateral precentral gyrus, and the
bilateral posterior cingulate gyrus also joined in this module. The
left middle frontal gyrus and all the ROIs located in the occipital
lobe constitute a new module, named as Module III. All the rest
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FIGURE 2 | Values of correlation coefficient between global network metrics and clinical assessments [13-item Alzheimer’s disease assessment scale (ADAS13),
clinical dementia rating scale sum of boxes (CDRSB), Mini-Mental State Examination (MMSE), and frequently asked questions (FAQ) scores]: (A) clustering
coefficient, (B) characteristic path length, (C) global efficiency, and (D) small worldness. The symbol “×,” “*,” “*,”or “�” represents a significant correlation (p < 0.05,
partial correlation analysis, controlling gender) between the network metric and cognitive score in the corresponding sparsity.

of the ROIs were included in Module IV for NC group. For
the MCI group, although anatomically adjacent regions are still
likely to be included in the same module, alterations occur in
its composition of modules, with a less localized organization
of community structure compared with NC. For example, the
ROIs of the cerebellum are separated into two modules, whereas
they stay in the same module in the NC group. Moreover, the
orbital surface of the frontal lobe distributed in two modules and
exhibited a denser connection with ROIs such as the bilateral
insula, hippocampus, and amygdala.

Classification of MCI and NC
Using the proposed two-layer random forest approach, we
performed the classification of MCI patients and NCs. An
accuracy of 86.3% was obtained by merely using the clinical
assessments (scores of MMSE, CDRSB, ADAS13, and FAQ).
However, when integrated with network metrics, improved
accuracies can be achieved across all the sparsities (as shown in
Figure 8), with highest accuracy of 91.4% obtained at the sparsity
of 16%. The results suggested that the network metrics could
provide additional useful information to assist the diagnosis
of MCI patients.

The highest accuracy (91.4%) was achieved when we used
the top 10 discriminative features (as shown in Figure 9). The
CDRSB was found to be the most informative feature for the
classification of MCI patients and NCs, with an overwhelming

importance compared with the other features. Other cognitive
assessments, FAQ, ADAS13, and MMSE, ranked at the second,
fourth, and fifth positions, respectively. As for the network
properties, nodal bc of CERCRU2.R also ranked in the top 5
important features. Moreover, the top 10 discriminative features
included global metric L and nodal bc of another four regions, i.e.,
FFG.R, the right supramarginal gyrus (SMG.R), the right lobule
VIIB of the cerebellar hemisphere (CERE7b.R), and IOG.R.

DISCUSSION

In the present work, we investigated the alteration of brain
functional network in MCI patients. The network measures
were explored on three scales, concerning its global metrics,
nodal characteristics, and modular properties. Furthermore, the
application of network metrics for patient’s identification was
performed and evaluated on a two-layer random forest approach.
The results showed significant alterations of network metrics in
MCI and suggested that the analysis of brain functional network
could provide assistant information for the diagnosis of MCI with
neuropsychological assessments.

Alterations in Global Network Metrics
The global network properties of scale I have been widely
investigated in previous studies (Stam and Reijneveld, 2007;
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FIGURE 3 | Global hubs of the functional brain networks in (A) the MCI group and (B) the NC group across the sparsities from 5 to 50%. An “∗” symbol indicates
that the corresponding region of interest (ROI) (the value of y-axis) is identified as a global hub at the corresponding sparistiy (the value of x-axis). For abbreviation of
ROIs, see Supplementary Table S2.

Jalili, 2016). However, discrepancies exist in previous studies
regarding the alteration of C, L, and GE of the human brain
network in MCI. Taking L for example, some researchers found
no significant difference between MCI and NC (Yao et al., 2010),
while others reported a significant increase (Yao et al., 2018) or
a significant decrease (Son et al., 2015) of L in MCI compared
with NC. Here, significantly decreased L and increased GE were
found in MCI compared with NC under almost all the considered
sparsities, suggesting that an enhanced functional integration of
brain network might occur at the prodromal stage of AD. Such
an observation might be indicative of a possible compensatory
mechanism in the early stage of AD (Zhou and Lui, 2013).
Moreover, existing studies have demonstrated that the clinical
symptoms of AD, such as impairments of memory, language,
and other cognitive functions, were associated with abnormal
structural and functional brain networks (Liu et al., 2017). In this
study, we also observed a significant correlation between global
network metrics and the clinical cognitive evaluations, suggesting
that graph theory analysis could act as a strategy to differentiate
MCI patients from NC subjects.

Alterations in Nodal Characteristics of
Scale II
The existence of global hubs in human brain networks was
supported by the present study. Although in this study, the global

hubs were identified on the group-level network, it provided
informative findings that might be associated with the underlying
pathological mechanism of MCI.

The most informative observation for the global hubs is its
distribution in the cerebellum. For both groups, stable hubs were
mainly distributed in cerebellar lobules IV–VI, VII, and VIII.
Studies on cerebellar functional topography have shown that
activity in sensorimotor regions were related to the contralateral
cerebellar lobules IV–VI and VIII, whereas more cognitively
demanding tasks engaged prefrontal and parietal cortices along
with cerebellar lobules VI and VII (Stoodley et al., 2012). In
the present study, CER8.R and CER4_5.L or CER4_5.R were
identified as global hubs in both groups, which might suggest
a maintained motor function in the MCI group. However,
prominent alteration has been revealed within cerebellar lobules
VI and VII since bilateral CERCRU2 (a part of lobule VII) and
CER6.L were found to be stable hubs in the NC group but not
in the MCI group (except for a few sparsities). Furthermore,
the nodal bc of CERCRU2.R decreased significantly (p < 0.05,
uncorrected) in MCI patients. We further observed positive
correlation (partial correlation analysis, p < 0.05, controlling
for gender) between nodal bc of CRECRU2.L and MMSE score
across 40 out of 46 sparsities (average correlation coefficient
over these sparsities was 0.19), and negative correlation between
nodal bc of CERCRU2.R and ADAS13 scores (32 sparsities,
average correlation coefficient was −0.18). The MMSE is the
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FIGURE 4 | Group difference of nodal betweenness centrality of the individual brain networks across the sparsities from 5 to 50%. A symbol of “∗” indicates a
significant difference (p < 0.05, logistic regression analysis, controlling gender) of bc in the corresponding region of interest (ROI) (the value of y-axis) at the
corresponding sparsity (the value of x-axis). Additionally, the “o” symbol is employed for a significant difference at the level of p < 0.05/116 (logistic regression
analysis, controlling gender). For abbreviation of ROIs, see Supplementary Table S2.

FIGURE 5 | Nodal betweenness centrality of the individual brain networks for normal control (NC) and mild cognitive impairment (MCI) in six regions of interest
(ROIs). The central line represents the group mean and the envelopes represents mean ± standard error. For abbreviation of ROIs, see Supplementary Table S2.
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FIGURE 6 | (A) The modularity of group-level networks and randomly shuffled networks; (B) the number of modules of the community structure detected in the
group-level networks for normal control (NC) and mild cognitive impairment (MCI) at different network sparsities.

TABLE 2 | Alterations of modular composition in MCI group relative to NC.

Module in NC Anatomical classification (abbreviation) of ROIs Module in MCI

I (34) CERCRU1.L, CERCRU1.R, CERCRU2.L, CERCRU2.R, CER4_5.R, CER6.L, CER6.R, CER7b.L, CER7b.R, CER8.L, CER8.R,
CER9.L, CER9.R, CER10.L, CER10.R, VER4_5, VER6, VER7, VER8, VER9, VER10

I (21)

CER3.L, CER3.R, CER4_5.L, VER1_2, VER3 IV (5)

CAU.L, CAU.R, PUT.L, PUT.R, PAL.L, PAL.R, THA.L, THA.R III (8)

II (37) PreCG.L, PreCG.R, SFGdor.L, SFGdor.R, IFGoperc.L, IFGoperc.R, IFGtriang.L, IFGtriang.R, SFGmed.L, SFGmed.R,
ORBsupmed.L, ORBsupmed.R, PCG.L, PCG.R, SPG.L, SPG.R, IPL.L, IPL.R, SMG.L, SMG.R, ANG.L, ANG.R, PCUN.L, PCUN.R

II (24)

MFG.R, MTG.R I (2)

ORBsup.L, ORBsup.R, ORBmid.L, ORBmid.R, ORBinf.L, ORBinf.R, REC.L, REC.R IV (8)

OLF.R, ACG.L, ACG.R III (3)

III (15) CAL.L, CAL.R, CUN.L, CUN.R, LING.L, LING.R, SOG.L, SOG.R, MOG.L, MOG.R, IOG.L, IOG.R, FFG.L, FFG.R III (14)

MFG.L II (1)

IV (30) STG.L, STG.R, MTG.L, TPOmid.L, TPOmid.R, ITG.L, ITG.R I (7)

ROL.L, ROL.R, SMA.L, SMA.R, PoCG.L, PoCG.R, PCL.L, PCL.R II (8)

OLF.L, INS.L, INS.R, HIP.L, HIP.R, PHG.L, PHG.R, AMYG.L, AMYG.R, HES.L, HES.R, TPOsup.L, TPOsup.R IV (13)

MCG.L, MCG.R III (2)

NC, normal controls; MCI, mild cognitive impairment subjects. For the description of the AAL-atlas abbreviations, see Supplementary Table S2.

best known and the most common used short screening tool of
AD for providing an overall measure of cognitive impairment
in clinical, research, and community settings (Arevalo-Rodriguez
et al., 2015), where ADAS13 is another widely used cognitive
assessment with a higher value indicating poorer cognitive
performance (Mohs et al., 1997; Sano et al., 2011). In this
study, cognitive impairment of the MCI patients was reflected
by both MMSE and ADAS13 scores (Table 1). A previous
study demonstrated that cognitive impairments may occur when
posterior lobe lesions affect cerebellar lobules VI and VII, which
would disrupt cerebellar modulation of cognitive loops with
cerebral association cortices (Stoodley et al., 2012). Therefore,
our findings suggested that alteration of FC in the cerebellum
(especially in the CERCRU2) be associated with the cognitive
impairment in MCI, and the cerebellum may be a potential target
for neuromodulation in treating MCI.

Significant changes of the network metrics of scale II
were also in found the bilateral FFG (especially FFG.R)
and IOG.R. FFG is thought to be a key structure for
functionally specialized computations of high-level vision such

FIGURE 7 | Color online modular structure of functional brain networks for:
(A) normal controls (NC), (B) mild cognitive impairment (MCI) patients. Each
dot in the surface representation (BrainNet Viewer, http://www.nitrc.
org/projects/bnv/, version 1.61) corresponds to a region of interest. The
modular structures were detected based on the group-level network at a
sparsity of 16%.

as face perception, object recognition, and reading (Weiner
and Zilles, 2016). Katja Weibert and Timothy J. Andrews
demonstrated that the activity in FFG.R predicts the behavioral
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FIGURE 8 | The accuracy, area under receiver operating characteristic curve
(AUC), sensitivity, and specificity of the 10-fold cross-validation (CV) for the
classification of mild cognitive impairment (MCI) and normal control (NC) with
the proposed two-layer random forest approach. The dashed line was
achieved by using only the scores of clinical assessments while the solid line
represents the model performance obtained after the combination of clinical
assessments and network analysis.

FIGURE 9 | The top 10 discriminative features and their feature importance in
the first-layer random forest for the classification of mild cognitive impairment
(MCI) and normal control (NC) at a sparsity of 16%. For abbreviation of regions
of interest (ROIs), see Supplementary Table S2.

advantage for the perception of familiar faces (Weibert and
Andrews, 2015). Based on a study of rs-fMRI, Cai et al.
(2015) reported altered FC of FFG in patients suffering
from amnestic MCI. IOG is also important for the visual
function during face processing, since it is connected to
the amygdala via white matter connectivity and forms a
network for facial recognition with the amygdala (Sato et al.,
2017). Previous studies demonstrated activation in bilateral
FFG and IOG.R revealed by a face localizer contrast (faces–
objects) (Rossion et al., 2003). In the present study, we
found that both FFG.R and FFG.L are frequently present as

global hubs in NC but absent in MCI, while IOG.R turns
out in MCI but not in NC. Furthermore, the nodal bc of
FFG.R decreased significantly in MCI while that of IOG.R
significantly increased. We thus speculated that MCI patients
might have an affected function of FFG.R, leading to a
compensatory role in IOG.R.

Alterations in Modular Structure of
Scale III
The present study confirms the existence of modular organization
in human brain networks, even in MCI patients. We detected
four modules for each group. For both groups, although
discrepancies existed in their composition of modules, some
common features can be found in the modular structure. Such
features might throw light on the basis of two fundamental
aspects of the human functional brain network, i.e., the functional
segmentation and integration. On the one hand, anatomically
adjacent ROIs tend to be clustered into the same module,
which might be the foundation of the functional segmentation
of the brain network. On the other hand, those ROIs, whose
anatomical neighbors were involved into a different module,
are likely to act as bridges to connect different modules
and to be identified as global hubs in the whole network.
Such a phenomenon should contribute to the functional
integration and the existence of small-worldness property of
the brain network.

The prominent alteration of the modular structure in MCI
(compared with NC) occurs in the cerebellum, with its ROIs
grouped into two modules. Another obvious change in the
modular structure in MCI occurs in the medial prefrontal
cortex, especially the orbitofrontal cortex (OFC). In previous
studies, the OFC has been found to be involved in sensory
integration, in representing the affective value of reinforcers,
and in decision making and expectation (Kringelbach, 2005).
In the present study, six out of eight OFC ROIs are shifted
to Module IV and clustered with the hippocampus and
parahippocampal regions in MCI. As structural abnormalities
in the OFC have been revealed by neuroimaging studies
in MCI patients (Wang et al., 2020), in the future, it
would be of interest to investigate whether our findings
related to the OFC is the cause or effect of its structural
abnormalities in MCI.

The Classification of MCI and NC
In clinical practice, the MCI diagnosis mainly depended
on concerns of the cognition changes from the patient,
knowledgeable informant, or according to a skilled clinician’s
observation (Langa and Levine, 2014). Neuropsychological
assessments, such as CDRSB and MMSE, are often
used in clinical trial for objective evidence of cognitive
impairment (Langa and Levine, 2014). In the present
study, with the combination of MMSE, CDRSB, ADAS13,
and FAQ scores, we found an accuracy of 86.3% for the
classification of MCI and NC, confirming the effectiveness
of neuropsychological assessments in the diagnosis of MCI.
Improved performances with highest accuracy of 91.4%

Frontiers in Neuroscience | www.frontiersin.org 10 September 2020 | Volume 14 | Article 558434

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-558434 September 30, 2020 Time: 16:49 # 11

Zhang et al. Brain Network Alters With MCI

can be achieved by combining neuropsychological assessments
and network analysis after feature selection implemented via
random forest approach. Furthermore, we found that the CDRSB
score played a vital role in discriminating MCI, in line with a
previous study which demonstrated that the CDRSB score could
be used to accurately stage severity of AD and MCI (O’bryant
et al., 2008). In addition, our results of feature selection further
indicated the importance to investigate the role of CERCRU2.R,
FFG.R, and IOG.R in MCI.

CONCLUSION AND LIMITATION

In this study, we investigated the alterations of brain functional
network in MCI. Although small-world properties, global hubs,
and modular structures were observed in both groups, network
metrics significantly changed in MCI when compared with
NC. The role of cerebellar regions, especially the Crus II of
cerebellar hemisphere, were found to be associated with the
cognitive impairment in MCI patients and discriminative in
the identification of MCI. Although network metrics were
demonstrated to provide useful information to assist the
diagnosis of MCI in clinical practice, future investigation is
required to clarify the association between these alterations and
the underlying pathological mechanism of MCI.

Moreover, the sex factor was controlled in the statistical
analysis to evaluate the group difference of network metrics or
their association with clinical characteristics in scales I and II.
Because the modular structure of each group was computed
at group level, the findings in scale III are hereby descriptive,
which suggests that we cannot statistically assess whether they
are partly contributed by sex difference. Given our observation
that sex contribution to scales I and II is trivial, we speculate
that the descriptive modular structure is not contributed by sex
difference. Future study on a larger sample is thus in favor of the
validation of our findings, especially those in scale III.
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